If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+18x+8=0
a = 2; b = 18; c = +8;
Δ = b2-4ac
Δ = 182-4·2·8
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{65}}{2*2}=\frac{-18-2\sqrt{65}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{65}}{2*2}=\frac{-18+2\sqrt{65}}{4} $
| 7+f=10f-9(f+2) | | 31d=252 | | 8x11=99 | | -52=v/9 | | 11(6x-7)=88x | | -70=-20-10x | | 5v+(v-17)=163 | | (21b-6)-5-(4b=4)=-7 | | 23=v/3-15 | | 2=x1.535 | | 15−3q=12 | | (17b-3)-8(2b+3)=-5 | | (9b-9)-4(2b+1)=-5 | | 21(x+4)-78=3(7x+2) | | 2.5x+3.5=31 | | x-79/8=97/8 | | 7x+11+2x+4+2x-2=180 | | 25x+200=300 | | 1/4x+7/8=1 | | -66=p/2 | | -2z+9+2z=9 | | X^2+5x+8=-2x-4 | | 4/8r=8 | | 5(8-3x)=20x-10 | | 9x+4+6x+1+6x-14=180 | | 3x+6=2x+5= | | 4(8-x)=-16 | | 7/112=(c–3)/8 | | 2k+4=-2k-20 | | 1/3+a=5/4 | | 5(8-3x)=29 | | -10m-1=2m+143 |